miércoles, 27 de febrero de 2008

Monte Carlo y Paramés.

Nuestro amigo y pródigo blogger JMDV ha publicado martes y miércoles sendos resúmenes de la Conferencia Anual Bestinver. Eso es algo que agradecemos muchísimo los que no hemos podido asistir a esa conferencia, porque Paramés se ha ganado con cifras el ser un referente del que aprender, aunque siempre con espíritu crítico. Por esa coincidencia con la Conferencia y los resúmenes de JMDV, quizás no sea el momento más oportuno para publicar este artículo, que por otra parte estaba ya redactado en la nevera de "Borradores" desde el pasado sábado. O quizás sí. En cualquier caso allá va tal cual lo escribí durante el pasado fin de semana:

Gracias Fernan2 por seleccionar siempre con buen criterio lo Visto por ahí ;) Pues bien, a través de uno de tus links, he llegado a este estupendo artículo de Julio Cuesta (quant_Notes). Confieso avergonzado que no lo había leído antes.

Resumiéndolo mucho, Julio Cuesta (quant_Notes), realiza un experimento Monte Carlo para relativizar los éxitos de los mejores gestores de fondos de inversión. En él demuestra que estadísticamente entre un universo suficiente, siempre tendremos unas gestoras a las que el puro azar permitirá superar el benchmark esperado durante un tiempo limitado. Sin méritos de gestión, sólo puro azar estadístico. Os recomiendo que le echéis un vistazo antes de seguir con nuestro análisis.

Dicho esto, vamos a buscarle tres pies al gato a este experimento o al menos lanzar alguna reflexión al aire:

Extrapolemos esta simulación en la que el puro azar supera al mercado en base a la gran cantidad de fondos y gestores fracasados, a otros escenarios no bursátiles. Por ejemplo a la probabilidad de ser feliz con tu pareja para el resto de tu vida. Siguiendo los pasos de la simulación de quant_Notes cabría pensar que deberíamos tomar como variables, el historial de todas las parejas y no sólo las personas no divorciadas o separadas. Sólo así tendríamos una idea clara de lo que le espera, estadísticamente, a un/a joven que va a empezar a compartir su vida con otra persona. Siguiendo el mismo razonamiento, un inversor que por el contrario confía en un gestor por encima de otro, sería quien tiende a pensar que una pareja que lleva muchos años de feliz vida en común, debe hacer algo mejor que otras que quedaron por el camino.

Es difícil imaginar que alguien que acumula 5, 7 o 12 divorcios o separaciones tiene la misma predisposición a ser feliz con su pareja hasta que la muerte los separe, y que simplemente ha tenido peor suerte que su amigo, el monógamo perpetuo. Es inverosímil que a las parejas que cambian de compañero/a como quien se cambia de calzoncillos, y a las que son estables a largo plazo, sólo las distinga el azar. Me resisto a creer que forman parte del llamado sesgo de supervivencia. Lo mismo podríamos decir de quien cambia de puesto de trabajo o lo mantiene hasta la jubilación. Encontraríamos infinidad de otros ejemplos también extrapolables. ¿Es sólo azar o perfiles personales e idiosincrasias distintas que determinan la futura evolución de una pareja o un puesto de trabajo? Del mismo modo ¿es sólo azar o gestiones distintas que determinan el éxito o el fracaso de un fondo de inversión?

No estoy diciendo que no comparta parcialmente las conclusiones de este experimento, pero me niego a pensar que la capacidad humana no es capaz de batir al mercado, más allá de lo que el propio azar sabe hacerlo. No obstante la estrategia de los gestores exitosos puede quedar fácilmente obsoleta e inútil ante la evolución y los cambios brutales que sufre nuestro escenario económico global. Y eso responsabiliza en mayor medida al azar de los resultados de los fondos exitosos pasados, presentes y futuros.

Lo curioso y cierto es que para la gran cantidad de gestores y fondos existentes que se crean y desaparecen constantemente, los históricos significativos que deberían separar el grano de la paja, son demasiado cortos. Es decir, deberíamos comparar los resultados de ese sesgo de supervivencia con un t=100 o 1000, o sea 100 o 1000 años de histórico de resultados para tener mayor seguridad de que hay algo más que sesgo de supervivencia o survivorship bias en sus éxitos. Cinco, diez o veinte años son trayectorias matemáticamante insuficientes dado el universo de gestores existente. El fracaso de los exitosos quizás sea cuestión sólo de tiempo, si realmente sus resultados son producto del azar. Pero aún siendo así, dado que nuestra vida como inversores es finita y se restringe a unas decenas de años en el mejor de los casos, sólo necesitaremos coincidir en el tiempo con los "t" exitosos de los gestores con los que nos tropecemos. Poco nos debe importar que el tiempo adjudique el éxito a la gestión o al azar ya que para los que nos tocó vivir sus "t" de éxito, ellos fueron los mejores gestores. Además los escenarios de inversión son tan cambiantes que las presuntas estrategias de gestión ganadoras dejarán de serlo con "t" que vaya más allá de algunas décadas. Por lo tanto, de hecho, jamás sabremos si el éxito pasado vino dado por la gestión o el azar.

Podríamos decir que los Mercados tienen un componente estocástico que no podemos ignorar, pero que debemos aprender todo lo posible del determinismo de algunos gestores.

Por lo tanto, ¿forma parte Paramés de una élite de gestores cuya estrategia es capaz de superar a los mercados permanentemente? ¿O por el contrario forma parte del sesgo de supervivencia junto con el resto del ránking mundial de los mejores gestores de bolsa? En mi opinión es un verdadero crack como gestor, a pesar de que su oficio le obliga a rotar sus carteras quizás más allá de lo que íntimamente desearía. Pero hay que agradecerle a Nassim Nicholas Taleb que nos abra los ojos con su "Fooled by Randomness" y con "The Black Swan". El primer libro, para relativizar los históricos exitosos que tanto nos gustan; y el segundo como ejercicio de Humildad ante lo que nos depararán a partir de hoy las bolsas. Dos obras a partir de las cuales nos miraremos los gestores y los Mercados con otros ojos, sin duda alguna.